

CARSON WATER SUBCONSERVANCY DISTRICT ALLUVIAL FAN MAPPING STUDY

Elise Jarrett
Water Resources Planner
U.S. Army Corps of Engineers

STEER JACKE

OVERVIEW

- Study History (Phase 1 & Phase 2)
- Geologic Assessment
- Hydraulic Assessment
- What's Next?

INCRES SE

STUDY HISTORY

- Phase One completed in 2017
 - Mapped and classified 297 alluvial fans based on apparent risk within the Carson River Watershed
- Phase Two identified specific alluvial fans for further geologic and hydraulic analyses

PHASE 1 RESULTS: DISTRIBUTION OF RISK RANKING

- A majority of the fans were classified as moderate risk
- No fans were classified as very high risk or as very low risk
- The Town of Dayton-Carson River watershed had the most high risk fans at 20
- West Fork Carson River watershed had the highest proportion of high risk fans at 76%

	Very Low	Low	Moderate	High	Very High	Total
Number of Fans	0	18	202	77	0	297
Percent	0%	6%	68%	26%	0%	100%

GOALS FOR PHASE 2

GOALS

- 1. Develop additional in-depth datasets for planners and city/county managers to increase knowledge of alluvial fan risk.
- 2. Increase the certainty of alluvial fan delineations on selected fans.
- 3. Conduct hydraulic analysis on selected fans.

SIGNIFICANCE

 To better understand and prioritize watershed risk, which would prevent further development in high hazard areas and develop strategies to mitigate in areas where development already occurs.

Goal

 Evaluate geohazards (areas susceptible to floods/debris flows)

Methodology

- 8 fans selected by County
 - Douglas County: (6 fans) 44, 45, 78,79, 81 & 82
 - Carson City County: (2 fans) 115 &116

Fans had to have LiDAR data available

- LiDAR data downloaded from USGS
- 3DEP Elevation Data (https://viewer.nationalmap.gov/basic/)

LiDAR Assessment:

- Only use bare earth data from LiDAR collection
- Digital elevation models
- Generated contours (1m, 2m, & 5m)
- Slope maps
 - Surface morphology
 - Calculate gradients
 - ➤ Define outer toe (distal edge) : 1° 2°

Digital elevation model

LiDAR Derived Contours (5 m)

Slope Model Examples

LiDAR Assessment (cont.):

- Fan boundaries
 - Contours superimposed on LiDAR hillshade
 - > Slope maps
 - > Aerial photography
- Site visits
- Evaluate Geohazards

Active channel

	Surface		Process		Avulsion		
Fan	Texture	Slope	Alluvial	Debris Flows	Potential	Development	Geohazard
44	Rough	>10*	Mod - Hi	Mod - Hi	Hi	Mod***	Hi
45	Rough	>10	Mod - Hi	Mod - Hi	Hi	Low***	Hi
78	Smooth-moderate	6 - 8**	Mod - Hi	Low	Low	Mod	Low
79	Smooth	6 - 8	Mod	Low	Low	Mod	Low
81	Smooth-moderate	4 - 9	Mod	Low	Mod - Hi	Low - Mod	Low
82	Moderate	4 - 6	Low - Mod	Low	Low	Mod	Low
115	Smooth	4 - 9	Mod	Low	Low - Mod	Low	Low
116	Smooth-moderate	6 - 9	Mod - Hi	Low - Mod	Low	Mod	Mod

^{*} Consistant slope

(Do not cite/reproduce)

^{**} Near topographic apex

^{***} Undergoing development

Summary:

- All fans are active (varying degrees)
 - > #79 & 82 pretty benign
 - > #44 & 45 very active (steepest of fans)
- Alluvial transport & deposition occurring
 - Channel & sheet flow deposits common (active indicator)
 - > Fresh deposits along road during site visit
- Debris flow possible
 - > #44 & 45 most susceptible
 - Steep sections near fan apex (#81 & 116; maybe #78)

Inundation Maps

HEC-RAS 2D Hydraulic Model

- Maximum inundation depth at every location
- Inundation depths assuming no channel movement for a 100-year event

FEMA FAN Program

- Only performed on highly active fans
- Looking to see what would happen if the channel moves areas that could be flooded
- Program uses peak flows and probabilities, rather than a 100-yr hydrograph.
- Program is mapping the area that has a 1% chance of being inundated, while the HEC-RAS model is mapping the inundated depth during a 1% probability event

Assumptions

- Highly active alluvial fans
- Flow paths are allowed to move randomly
- Simple relationship between depth and flow
- Not valid for debris flow

Geologic Assessment

FEMA FAN

2D HEC-RAS

Inundation Map

Site 115

Inundation Maps

Inundation Maps

WHAT'S NEXT?

Understanding impacts to existing and future development

Prioritizing watershed risk and develop strategies to minimize

that risk

 Utilizing identified alluvial fan areas and associated risk in development review

Source: esri.com

QUESTIONS?

Elise Jarrett: Elise.M.Jarrett@usace.army.mil, (916) 557-6622

Lew Hunter (Geology): Lewis.E.Hunter@usace.army.mil, (916) 557-5368

John Newton (Hydraulics): John.F.Newton@usace.army.mil, (509) 527-7289

